

Image quality for WL: engineering comments

Outline

- 1 [pp. 2-5]. Recap of discussion Neil/Paul/Dave on unobscured trade pros and cons [action on me: turn my notes into ppt]
- 2. [pp. 6-16] Ellipticity comparison of J-Omega v. 4c3 [Lehan working this but initial draft is here]
- 3. [pp. 17-22] Discussion of pointing & guiding architecture for WL [Kruk]

Telecon w/ Schechter and Gehrels

- Goal clarify the concerns on the unobscured aperture telescope alternative to Omega
- Context is enabling WL observations that meet the need for exquisite stability
- Requirements on ellipticity:
 - Drift in ellipticity as a function of time need to be stable during an observation
 - Change in ellipticity across the field
 - Rms ellipticity static across the field would be ideal (ie stable in time and with field angle) [also ideally, only psf chromatic variation is diffraction scaling w/ λ]
- Design includes a slower PM vs. JΩ

Design considerations for WL imaging

- Consensus is to avoid refractive cameras for WL imaging
- Short term AI: How many psf calibration stars can we expect in a WL exposure [SDT] – answer from quick look by Rhodes is >900
 - We can expect more bright stars than CCD observations, e.g.
 COSMOS, because of s/w to avoid saturated H2RG pixels
- Short term AI: document variation across the field in static intrinsic ellipticity, compare Omega to candidate uTMA design
 - Below, pp, 6-15
- PS: Hubble ellipticity varies across the field 0.1 this is certainly too much.

HST performance v. WFIRST

- Discussion of HST thermal and jitter performance vs. WFIRST expectations
 - HST has 15 degree C axial gradient changes, unacceptable focus variability compared to WL stability requirements;
 - HST jitter and drift are low (4 mas) and it may be challenging to be sure we will get nearly this low on a lighter, cheaper observatory. No question it can be done with enough \$. [see pointing/guiding presentation below]
- Thermal instability of HST largely due to its low orbit and operational constraints, e.g. Earth-pointing during portions of orbit when targets out of CVZ (continuous viewing zone) go behind the earth.
- Also more modern construction techniques that all were demonstrated on Chandra should be used on WFIRST. Chandra thermal stability of 0.2 degree (gradient stability) is ~ 2 orders of magnitude better than the 15 degree gradient instability observed on HST.
- Detailed pitch on HST performance v. WFIRST expectations is available

Jitter considerations

- Jitter may be constant across field
 - but given that our field is much larger than others, this would need to be shown through modeling
- PS agrees that the imaging performance of the uTMA is a strong argument for its use (e.g. the EE50 comparison Hirata showed at the SDT3 telecon).
- Another consideration is the additional ellipticity uncertainty we have seen introduced by PSFs with spider diffraction.
- Longer term action items:
 - SDT needs to help flow down the WL stability requirements towards engineering stability requirements
 - Project needs to continue to update predicted stability, integrated modeling required.
 - Project should share charts on TMA heritage with SDT [in backup of project presentation on uTMA trade space & design 4c3]

PSF ellipticity: a comparison of an obscured and unobscured point design for the SDT weak lensing subgroup

J. P. Lehan May 6, 2011

Overview

- Compare obscured design to unobscured
- Obscured: JDEM Omega
- Unobscured: Option 4c3 (focal imager as similar to JDEM Omega as practical)
- Use direct pupil integration so we can chose image plane sampling

Pupil sampling: 512x512

Image sampling: 512x512 (1.75 um spacing)

Field sampling: 3x3 [only middle point is inside perimeter, so a quick, conservative look]

0.23 arc-sec gaussian galaxy (full width 1/e max size)

Ellipticity metric definitions

$$e1 = \frac{P_{xx}}{P_{xx} + P_{yy}}$$
 For a circular image e1=0.5, e2=0

$$e2 = \frac{P_{xy}}{P_{xx} + P_{yy}}$$

$$P_{xx} = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \langle x \rangle)^2 W(x, y) * PSF(x, y) dx dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x, y) dx dy}$$

$$P_{yy} = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y - \langle y \rangle)^2 W(x, y) * PSF(x, y) dx dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x, y) dx dy}$$

$$P_{xy} = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \langle x \rangle) \left(y - \langle y \rangle \right) W\left(x, \, y \right) * PSF\left(x, \, y \right) dx \, dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W\left(x, \, y \right) dx \, dy}$$

where $\langle x \rangle$, $\langle y \rangle$ are the first moments , W(x, y) is the weighting function (here a gaussian "galaxy") , and * represents the convolution operation.

Omega simulation details

- Spiders and cold-stop mask (Mentzell Sim 4-2011)
- Nominal focus (F/#)
- Uses nominal detector position and orientation
- Accounts for focal plane obliquity (14.254°)

Option 4c3 simulation details

- No spiders or cold mask
- Accounts for exit pupil shape
- Nominal focus (F/#)
- Uses nominal detector position and orientation
- Accounts for focal plane obliquity (10.924°)

Variations with field

Obscured

e1

Unobscured

x/y	-0.357	0.0	0.357
0.234	0.513353	0.512823	0.511992
0.0	0.509292	0.509570	0.509404
-0.234	0.511566	0.510974	0.510296

x/y	-0.459	0.0	0.459
0.2315	0.508732	0.505299	0.501826
0.0	0.507902	0.506246	0.500314
-0.2315	0.507704	0.504514	0.501205

e1 ave = $0.5110\pm$. 0015

e2

e1 ave = $0.5049\pm$. 0031

Obscured

Unobscured

x/y	-0.357	0.0	0.357
0.234	-1.08e-3	-5.30e-3	-9.70e-3
0.0	-3.31e-3	-2.90e-3	-4.33e-3
-0.234	-4.90e-3	-2.85e-3	1.39e-3

x/y	-0.459	0.0	0.459
0.2315	-1.06e-4	-8.60e-4	-5.50e-4
0.0	-9.60e-5	2.91e-4	2.62e-4
-0.2315	1.34e-4	6.18e-4	8.87e-4

$$e2 \text{ ave} = (-3.66 \pm 3.06) \times 10-3$$

$$e2 \text{ ave} = (-0.422 \pm 6.624)$$

x10-4

Field in object space degrees₁₁

summary

- Ellipticity of 4c3 design residuals is closer to ideal than that from $J\Omega$ design residuals
- "excess" in metric for 4c3 from ideal is roughly half of that for $J\Omega$
- True using e,e1,e2 metric or invariant metric (in backup)

Extra Material follows

Lehan metric E

- Motivation: SNAP metrics assume a preferred orientation in space (x and y). True for array but not nature.
- One number metric for ellipticity
- Pxx, Pyy, Px+y, Px-y all geometrically-equivalent
- € ~ 1-(RMS deviation from RMS average 2nd moment)
- € = 1 for perfectly circular PSF
- Pij is RMS spatial average 2nd moment

Px+y

$$\epsilon = 1 - \frac{\sqrt{(P_{xx} - P_{ij})^2 + (P_{yy} - P_{ij})^2 + (P_{x+y} - P_{ij})^2 + (P_{x-y} - P_{ij})^2}}{4P_{ij}}$$

Omega variations with field

Pxx

x/y	-0.357	0.0	0.357
0.234	0.546231	0.551042	0.558245
0.0	0.535538	0.542301	0.550308
-0.234	0.543251	0.548048	0.555605

Pxx, etc. moments have units of arc-sec^2

E unitless

Руу

x/y	-0.357	0.0	0.357
0.234	0.517816	0.523485	0.532094
0.0	0.515997	0.521932	0.529989
234	0.518687	0.524508	0.533185

Field in object space degrees

Pxy

x/y	-0.357	0.0	0.357
0.234	-1.15e-3	-5.69e-3	-1.06e-2
0.0	-3.48e-3	3.08e-3	-4.68e-3
-0.234	-5.22e-3	-3.06e-3	1.51e-3

 ϵ

x/y	-0.357	0.0	0.357
0.234	0.991012	0.990524	0.989408
0.0	0.993101	0.992907	0.992751
-0.234	0.991206	0.992267	0.992896

 ε ave = 0.9918±0.0013

4c3 variations with field

Pxx

x/y	-0.459	0.0	0.459
0.2315	0.229438	0.228884	0.22884
0.0	0.228737	0.229544	0.22766
-0.2315	0.228498	0.228167	0.22827

Pxx, etc. moments have units of arc-sec^2

E unitless

Руу

x/y	-0.459	0.0	0.459
0.2315	0.221562	0.224083	0.227175
0.0	0.221620	0.223880	0.227381
2315	0.221563	0.224083	0.227172

Field in object space degrees

Pxy

x/y	-0.459	0.0	0.459
0.2315	-4.8e-4	-3.90e-4	-2.50e-4
0.0	-4.3e-5	1.32e-4	1.19e-4
-0.2315	6.04e-5	2.80e-4	4.04e-4

4c3

€ ave = 0.9972±0.0021

Omega

 ϵ ave = 0.9918±0.0013

 ϵ

x/y	-0.459	0.0	0.459
0.2315	0.994940	0.997249	0.999385
0.0	0.994586	0.997198	0.999911
-0.2315	0.994888	0.997216	0.999362

Pointing Control and Knowledge

Jeff Kruk

Pointing Knowledge - 1

- Nominal S/C performance requirements:
 - Control: p/y: 25 mas rms/axis, roll: 1 arcsec
 - Jitter: p/y: 40 mas rms/axis, roll: 1.6 arcsec (TBR)
 - Knowledge: p/y: 4 mas rms/axis, roll: 300 mas(TBR)
- Attitude Sensor suite:
 - FGS w/in payload
 - Two star trackers ~perpendicular to boresight
 - 2 arcsec accuracy
 - Gyro: Kearfott SIRU
 - AWN: 1mas/√Hz, ARW: 36mas/√Hr

Pointing Knowledge - FGS

- Outrigger SCAs on Imager focal plane
 - Supplemented by separate guider channel for slitless spectroscopy
- Plate scale: 180 mas/pixel
- FOV per SCA: 6.12 arcmin on a side
- Performance at 10Hz:
 - Noise Equivalent Angle at AB=15.5: 5-10 mas depending on filter
 - Noise Equivalent Angle at AB=16.0: 7-18 mas depending on filter
 - (when tracking 4 stars can track more if necessary)
- For accurate revisits to a field, pre-select guide stars on the ground to ensure that the same stars are used for each revisit.

FGS cont.

- Guide star density at NGP:
 - Probability of finding N stars brighter than AB=15.5

AB=15.5	1	2	3	4
1 SCA	0.93	0.74	0.50	0.28
2 SCA	0.99	0.97	0.91	0.80

Probability of finding N stars brighter than AB=16.0:

AB=16.0	1	2	3	4
1 SCA	0.97	0.88	0.72	0.50
2 SCA	0.99	0.99	0.98	0.94

AB=16.0 gives adequate performance at 10Hz.

Telemetry downlink

- It is standard practice to downlink samples of sensor data; question is the sampling rate.
- Probably not worth downlinking full gyro rate, for example.
 - Not necessarily better than the FGS data if flexible modes in the instrument are important
- Can downlink full 10Hz FGS GS position data
- Can downlink Kalman filter output at its full rate, which indirectly provides the net results of the high-rate gyro data.
- What knowledge is required?

Present Status

- Have begun modeling integrated S/C, payload, ACS.
- FEM of Omega payload and S/C incorporated into simulator
- Includes both fixed and articulated solar arrays, fuel slosh model
- At early stages in tuning control law for slew-settle studies
- May need to iterate on star-tracker, rate gyro selection.